Latent Variable Discovery Using Dependency Patterns
نویسندگان
چکیده
The causal discovery of Bayesian networks is an active and important research area, and it is based upon searching the space of causal models for those which can best explain a pattern of probabilistic dependencies shown in the data. However, some of those dependencies are generated by causal structures involving variables which have not been measured, i.e., latent variables. Some such patterns of dependency “reveal” themselves, in that no model based solely upon the observed variables can explain them as well as a model using a latent variable. That is what latent variable discovery is based upon. Here we did a search for finding them systematically, so that they may be applied in latent variable discovery in a more rigorous fashion.
منابع مشابه
Transition-based dependency parsing as latent-variable constituent parsing
We provide a theoretical argument that a common form of projective transitionbased dependency parsing is less powerful than constituent parsing using latent variables. The argument is a proof that, under reasonable assumptions, a transition-based dependency parser can be converted to a latent-variable context-free grammar producing equivalent structures.
متن کاملFast and Robust Multilingual Dependency Parsing with a Generative Latent Variable Model
We use a generative history-based model to predict the most likely derivation of a dependency parse. Our probabilistic model is based on Incremental Sigmoid Belief Networks, a recently proposed class of latent variable models for structure prediction. Their ability to automatically induce features results in multilingual parsing which is robust enough to achieve accuracy well above the average ...
متن کاملA latent variable model for joint pause prediction and dependency parsing
The prosody of speech is closely related to syntactic structure of the spoken sentence, and thus analysis models that jointly consider these two types of information are promising. However, manual annotation of syntactic information and prosodic information such as pauses is laborious, and thus it can be difficult to obtain sufficient data to train such joint models. In this paper, we tackle th...
متن کاملToward a Theory of Pattern Discovery
This paper formalizes a latent variable inference problem we call supervised pattern discovery, the goal of which is to find sets of observations that belong to a single “pattern.” We discuss two versions of the problem and prove uniform risk bounds for both. In the first version, collections of patterns can be generated in an arbitrary manner and the data consist of multiple labeled collection...
متن کاملTexts and Social Users Using Time Series and Latent Topics
Knowledge discovery has received tremendous interests and fast developments in both text mining and social user mining. The main purpose is to search massive volumes of data for patterns as so-called knowledge. Knowledge can exist in different formats such as texts or numbers. Knowledge can be observed or hidden in different hierarchies. Knowledge can even be user-generated such as social conte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1607.06617 شماره
صفحات -
تاریخ انتشار 2016